Integrated photonic emitter with a wide switching range of orbital angular momentum modes

نویسندگان

  • Yu Wang
  • Peng Zhao
  • Xue Feng
  • Yuntao Xu
  • Kaiyu Cui
  • Fang Liu
  • Wei Zhang
  • Yidong Huang
چکیده

Due to the nature of infinite dimensionality, the orbital angular momentum (OAM) has been considered as a new degree of freedom of light and widely expanded the scopes of substantial optical applications such as optical telecommunication, quantum information, particle manipulation and imaging. In recent years, the integrated photonic OAM emitters have been actively investigated due to both compactness and tunability. Essentially, the number of available OAM modes by dynamic switching should be large enough so that the dimensionality of OAM could be explored as much as possible. In this work, an integrated photonic emitter with a wide switching range of OAM modes is theoretically developed, numerically simulated, and experimentally verified. The independence of the micro-ring cavity and the scattering unit provides the flexibility to design the device and optimize the performance. Specifically, the dynamic switching of nine OAM modes (l = -4 ~ 4) with azimuthal polarization has been demonstrated by electrically controlled thermo-optic effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters.

The ability to rapidly switch between orbital angular momentum modes of light has important implications for future classical and quantum systems. In general, orbital angular momentum beams are generated using free-space bulk optical components where the fastest reconfiguration of such systems is around a millisecond using spatial light modulators. In this work, an extremely compact optical vor...

متن کامل

Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system.

We experimentally demonstrate and evaluate the performance of an analog signal transmission system with photonic integrated optical vortex emitter and 3.6-km few-mode fiber (FMF) link using orbital angular momentum (OAM) modes. The fabricated photonic integrated device is capable of emitting vector optical vortices carrying well-defined and quantized OAM modes with topological charge l=-2 and 2...

متن کامل

Optical vortex beam generator at nanoscale level

Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based o...

متن کامل

Study on Generation of Higher Order Orbital Angular Momentum Modes and Parameters Affecting the Vortex

In this manuscript, higher-order Orbital Angular Momentum (OAM) modes and parameters affecting vortex in the radiation pattern have been studied. A uniform circular array resonating at 10 GHz frequency is formed using eight identical rectangular patch antennas. Three uniform circular arrays are analyzed, simulated, and fabricated for OAM modes 0, +1, and -1 respectively. The higher-order OAM mo...

متن کامل

Integrated optical vortex beam receivers.

A simple and ultra-compact integrated optical vortex beam receiver device is presented. The device is based on the coupling between the optical vortex modes and whispering gallery modes in a micro-ring resonator via embedded angular gratings, which provides the selective reception of optical vortex modes with definitive total angular momentum (summation of spin and orbital angular momentum) thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016